# YEAR 6 MATHS FOCUS

## MEASUREMENT AND GEOMETRY

Volume & Capacity

Learning Experiences

Volume & Capacity

## VOLUME & CAPACITY

OUTCOME

A student:

MA3-11MG:

selects and uses the appropriate unit to estimate, measure and calculate volumes and capacities, and converts between units of capacity

TEACHING POINTS | The attribute of volume is the amount of space occupied by an object or substance and is usually measured in cubic units, eg cubic centimetres (cm^3) and cubic metres (m^3). |

Capacity refers to the amount a container can hold and is measured in units, such as millilitres (mL), litres (L) and kilolitres (kL). Capacity is only used in relation to containers and generally refers to liquid measurement. The capacity of a closed container will be slightly less than its volume – capacity is based on the inside dimensions, while volume is determined by the outside dimensions of the container. It is not necessary to refer to these definitions with students (capacity is not taught as a concept separate from volume until Stage 4). | |

Once students are able to measure efficiently and effectively using formal units, they could use centimetre cubes to construct rectangular prisms, counting the number of cubes to determine volume, and then begin to generalise their method for calculating the volume. | |

The cubic metre can be related to the metre as a unit to measure length and the square metre as a unit to measure area. It is important that students are given opportunities to reflect on their understanding of length and area so that they can use this to calculate volume. |

LANGUAGE | Students should be able to communicate using the following language: capacity, container, litre, millilitre, volume, dimensions, length, width, height, layers, cubic centimetre, cubic metre. |

The abbreviation m^3 is read as ‘cubic metre(s)’ and not ‘metre(s) cubed’. |

## EXPECTATIONS OF ATTAINMENT

Connect volume and capacity and their units of measurement (ACMMG138) | select the appropriate unit to measure volume and capacity |

demonstrate that a cube of side 10 cm will displace 1 litre of water | |

demonstrate, by using a medicine cup, that a cube of side 1 cm will displace 1 mL of water | |

equate 1 cubic centimetre to 1 millilitre and 1000 cubic centimetres to 1 litre | |

find the volumes of irregular solids in cubic centimetres using a displacement strategy |

Connect decimal representations to the metric system (ACMMG135) | recognise the equivalence of whole-number and decimal representations of measurements of capacities, e.g. 375 mL is the same as 0.375 L |

interpret decimal notation for volumes and capacities, e.g. 8.7 L is the same as 8 litres and 700 millilitres | |

record volume and capacity using decimal notation to three decimal places, e.g. 1.275 L |

Convert between common metric units of capacity (ACMMG136) | convert between millilitres and litres |

– explain and use the relationship between the size of a unit and the number of units needed to assist in determining whether multiplication or division is required when converting between units, e.g. ‘Fewer litres than millilitres will be needed to measure the same capacity, and so to convert from millilitres to litres, I need to divide’ {Communicating, Reasoning, Critical and creative thinking} |

Learning Experiences

To be added